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Abstract 
 The elliptic variational inequality of the first kind for the "obstacle problem" is 
considered. This elliptic variational inequality is related to second order partial 
differential operator. The physical and mathematical interpretation and some 
properties of the solution are given. 
 
1- Introduction 
 An important and very useful class of non-linear problems arising from 
mechanics, Physics etc. consists of the so-called variational inequalities. In this paper 
we shall restrict our attention to the study of the existence, uniqueness, and properties 
of the solutions of elliptic variational inequality EVI, which have two classes, namely 
EVI of the first kind EVI  of the second kind. 
 
1-1: Notations: 

· V: real Hilbert space with scalar product (. , . ) and associated norm × . 

· V*: The dual space of V. 
· a(. , .): Â®´VV  is a bilinear, continuous and V- elliptic mapping on 

VV ´ . 
A bilinear form a(. , .) is said to be V-elliptic if there exists a positive constant  

a  such that ( ) Vv           vvva Î"³ 2,  . 

In general we do not assume a(.,.) to be symmetric, since in some applications 
non-symmetric bilinear forms may occur naturally [1]: 

· Â®VL :  continuous , linear functional. 
· K : is a closed, convex, non-empty subset of V. 
· ( ) { }¥ÈÂ=Â®Vj :.  is a convex, lower semi-continuous (L.S.C) and 
proper functional. 

(j(.) is proper if <j(v)>->¥  "  vÎV and  j¹¥). 
1.2: EVI of First Kind 
 To find uÎV such that u is a solution of the problem : 
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1.3: EVI of Second Kind 
 To find uÎV such that u is a solution of the problem : 
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1.4: Existence and Uniqueness Results for EVI of first Kind 
1.4.1: A Theorem of Existence and Uniqueness 
Theorem 1.4.1 [2]: The problem P1 has one and only one solution. 
Proof: 1- Uniqueness 
 Let u1 and u2 be solutions of (P1).We have then: 
    ( ) ( ) KuKv                 uvLuvua ÎÎ"-³-

1
,11,1 ……..(1) 

    ( ) ( ) Ku K,v                    uvLuvua 2 ÎÎ"-³- 22,2 ….(2) 

putting u2 for v in (1) and u1 for v in (2) and adding we get, by using the V-
ellipticity of a(.,.), 

( ) 012,12

2

12 £--£- uuuu a  uua  

which implies u1=u2, since a>0. 
 

2. Existence: We will reduce the problem (P1) to a fixed point problem. By the Riesz 
representation theorem for Hilbert spaces there exist  
AÎ   (V,V) (A=At if a(.,.) is symmetric) and lÎV such that: 
 (Au,v)= a(u,v)       "u,vÎV 
 and L(v)=( l ,v)     "vÎV   ……………..(3) 

Then the problem (P1) is equivalent to finding uÎV such that: 
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This is equivalent to finding u such that 
( )( )
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 This is equivalent to finding u such that: 
 ( )( )l--= AuuPu k r  , for some ,0>r ……………..(5) 

where Pk denotes the projection operator from V to K in the 
v
×  consider the 

map Wp(v)=Pk(v-r(Av-l ))…………………..(6) 
 Let v1, v2 ÎV, then since Pk is a contraction we have: 
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 Hence we have 
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Thus rW  is a strict contraction mapping if 2

2
0

A

ar << . By taking r  in 

this range we have a unique solution for the fixed point problem which implies the 
existence of a solution for (P1). 

 
2- An Example of EVI of the First Kind "The Obstacle Problem" 
2.1: Notations 
* W : a bounded domain in 2Â . 
* G: W¶ . 
* x={x1, x2} a generic point of W. 
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* ( )WmC : space of m-times continuously differentiable real valued functions for 

which all the derivative up to order m are continuous on W . 
* ( ) ( ){ WÎ=W mm CvC0 : supp (v) is a compact subset of }W  

*
( )
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Wm ppm L
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,,  for ( )WÎ mCv  where a=(a1, a2) ; a1, a non-negative 
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* ( )WpmW , : completion of ( )WmC  in the norm defined above. 

* ( )WpmW ,
0 : completion of ( )WmC0  in the above norm. 

* ( ) ( )W=W 2,mm WH , 

* ( ) ( )W=W 2,
00
mm WH . 

 
2.2: The Mathematical Interpretation of The Problem :  

 Let ( ) ( ){
G

WÎ=W= VHVHV :11
0 = trace of V on G=0} 

 ( ) ò
W

Ñ×Ñ= vuvua ,  

where: 
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L(v)=<f,v> for fÎV*=H-1(W) and vÎV. 
Let ( ) ( ) 001 £YWÇWÎ

G
andCHy  

Define ( ){ }WY³WÎ=  on e. a. vHvk :1
0  

 Then the obstacle problem is a(P1) problem defined by: 
Find u such that: 
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2.3: The Physical Interpretation of The Problem 
 Let an elastic membrane occupy a region W in the x1, x2 plane, this membrane 
is fixed along the boundary G of W. When these is no obstacle, from the theory of 
elasticity the vertical displacement u, obtained by applying a vertical force F, is given 
by the Dirichlet problem. 
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 Where f= F/t, t being the tension. 
 Where there is an obstacle, we have a free boundary problem and the 
displacement u satisfies the variational inequality (2.2) with Y being the height of the 
obstacle. 
 Similar EVI also occur, sometimes with non-symmetric bilinear forms, in 
mathematical models for the following problems:- 

- Lubrication phenomena [3]. 
- Filtration of liquids in porous media [1]. 
- Two dimensional, irrotational flows of perfect fluids [4], [5], [6]. 

 
3. Existence and Uniqueness Results of The "Obstacle Problem" 
 For proving the existence and uniqueness of the problem (2.2) in section 2.2, 
we need the following lemmas stated below without proof [2]:- 
LEMMA (1): Let W be a bounded domain in NÂ . Then the semi-norm on ( )W1H  
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 is a norm on ( )W1
0H  and it is equivalent to the norm on ( )W1

0H  induced 

from ( )W1H  

- The above lemma is known as Poincare-Friedrichs lemma. 
 
LEMMA (2): Let Â®Â=f  be uniformly Lipschitz continuous (i. e. $ k>0 such 

that ( ) ( ) ( )ttktftf ¢-£¢-      ÂÎ¢tt1 ) and such f ¢  has a finite number of points 

of discontinuity. Then the induced map f* on ( )W1H  defined by ( )ufu ®  is a 

continuous map in to ( )W1H . Similar results holds for ( )W1
0H  whenever f(0)=0. 

 
Corollary 
 If V* and V- denote the positive and the negative parts of V for vÎ ( )W1H  

(respectively ( )W1
0H ) then the map { }-+® VVv ,  is continuous from 

( )W1H ® ( )W1H ´ ( )W1H  (respectively ( )W1
0H  ® ( )W1

0H ´ ( )W1
0H ). Also v® v  

is continuous. 
 
3.1: Proof the Existence and Uniqueness of the Problem (2.2) 
 In order to apply theorem (1.4.1), we have to prove that a(.,.) is  
V-elliptic and that k is a closed, convex, non-empty set. 



 

 

 The V-ellipticity  of a(.,.) follows from Lemma (1) and the convexity of k is 
trivial , then: 
1- k is non-empty 
 we have: ( ) ( )WÇWÎY 01 CH  with 0£Y  on G. Hence, by the above 

corollary, ( )WÎ+ 1Hy . Since 0£Y
G

 we have 0£Y+ . This implies 

( )WÎY+ 1
0H , then { } Y³Y=Y+ 0,max . 

Thus kÎY+ . Hence k is non-empty. 
2- k is closed 
 Let vn®v strongly in ( )W1

0H  where vnÎk and vÎ ( )W1
0H . Hence vn®v 

strongly in L2(W). Therefore we can extract a subsequence { }niv  such that vvni ®  a. 

e. on W. Then Y³niv  a. e. on W implies that: Y³v  a. e. on W; therefore vÎk. 
Hence, by The. (1.4.1), we have a unique solution for (2.2). 
 
4. Interpretation of the Problem (2.2) as a Free Boundary Problem 
 For the solution u of (2.2) we define: 

( ) ( ){ }xxu      xx Y>WÎ=W+ ,:  

( ) ( ){ }xxu       xx Y=WÎ=W ,:0 , 

g
0

00 ;;
WW

++ ==W¶ÇW¶= + uuuu  

 We can formulate the problem (2.2) as the problem of finding g (the free 
boundary) and u such that: 

,+W=D-  on              fu …………………(4.1) 

,0  on                     u WY= ……………….(4.2) 
,  on                      u G= 0 ………………….(4.3) 

gg

0uu =+                         …………………..(4.4) 

 The physical interpretation of these relations is the following: (4.1) means 
That on +W  the membrane is strictly over the obstacle, (4.2) means that on 0W  the 
membrane is in contact with the obstacle, (4.4) is a transmission relation at the free 
boundary. 
 Actually (4.1)-(4.4) are not sufficient to characterize u since there are an 
infinity of solutions for (4.1)-(4.4). therefore it is necessary to add other transmission 
properties: for instance, if Y is smooth enough (say ( )WÎY 2H ), we require the 
continuity of uÑ  at g 
 ( ) ( )( )W´WÎÑ 11 HHu . 
 This kind of free boundary interpretation holds for several problems modeled 
by EVI of first kind and second kind. 
 
5. Regularity of Solution 
 we state without proof the following regularity theorem for the problem (2.2). 
Theorem 5.1: (BREZIS-STAMPACCHIA [7]): 
 Let W be a bounded domain in 2Â  with a smooth  boundary . It  

 ( ) ( ) ¥<<WÎ= ò
W

p1        Lf    h       wit          fvvL p ,  



 

 

 and ( )WÎY pW ,2 , 

 Then the solution of the problem (2.2) is in ( )WpW ,2  
 
LEMMA 5.2 [2]: Let W be a bounded domain of NÂ  with a boundary G sufficiently 
smooth. Then ( )WD 2L

v  defines a norm on ( ) ( )WÇW 1
0

2 HH  which is equivalent to 

the norm induced by the ( )W2H -norm. 
 We shall now apply the lemma 5.2 to prove the following theorem using a 
method of BREZIS-STAMPACCHIA [7]. 
 

Theorem 5.3: If G is smooth enough, Y=0 and ( ) ò
W

= fvvL  with ( )WÎ 2Lf  then 

the solution u of the problem (2.2) satisfies: 
( )WÇÎ 2Hku , 

( ) ( )WW
£D 22 LL

fu ………………………..(5.1) 

 
Proof: From section (3.1), it follows that problem (2.2) has a unique solution u, with 
L and Y as above. 
 Let Î>0, consider the following Dirichlet problem 

î
í
ì

=G

WDÎ-

Î

Î

)2.5...(..................................................0u

, in           u
 

 Problem (5.2) has a unique solution in ( )W1
0H  and the smoothness of G 

assures that uÎ belongs to ( )W2H . Since u³0 a. e. on W, by the maximum principle 
for second order elliptic differential operators [8], we have uÎ³0. Hence: 
uÎÎk ……………………………………….(5.3) 
from (5.3) and (2.2) we obtain: 

( ) ( ) ( )ò
W

ÎÎÎ -=-³- uufuuLuuua , ……….(5.4) 

The V-ellipticity of a(.,.) implies 
( ) ( ) ( ) ( )uuuauuuauuuuauuua -³-+--=- ÎÎÎÎÎÎ ,,,,  

 so that by (5.4) we have: 

 ( ) ( )ò
W

ÎÎÎ -³- uufuuua , ……………(5.5) 

By (5.2) and (5.5) we obtain: 

 ( ) òò
W

Î
W

ÎÎ D³ÎDÑ×ÑÎ uf         uu  

so that 

 ( )ò ò
W W

ÎÎÎ D³DÑ×Ñ ufuu ……………….(5.6) 

By Green's formule , (5.6) implies 

 ( )ò ò
W W

ÎÎ D³D- ufdxu 2
 

 Thus ( ) ( )WWÎ £D 22 LL
fu ……………….(5.7) 



 

 

 Using Schwarz inequality in ( )W2L  

 By Lemma (5.2) and relations (5.2), (5.7) we obtain uu =ÎÎ®0
lim  weakly in 

( )W2H , ……………………..(5.8) 

(which implies that lim uÎ=u strongly in 
sH , ( )W , for every s<2), 

 so that u Î ( )W2H  with 

( ) ( )WWÎ £D 22 LL
fu ……………..(5.9) 
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  الخلاصة
هــذه المتباینــة التغایریــة الناقــصیة ". لمــسألة العــائق"تــم اعتبــار المتباینــة التغایریــة الناقــصیة مــن النــوع الاول 

  .وقد تم برهنة التفسیر الریاضي والفیزیائي وبعض خواص الحل. تعود الى مؤثر تفاضلي جزئي من الرتبة الثانیة
  

 
 


