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Abstract

The elliptic variational inequality of the first kind for the "obstacle problem” is
considered. This elliptic variational inequality is related to second order partial
differential operator. The physical and mathematical interpretation and some
properties of the solution are given.

1- Introduction

An important and very useful class of non-linear problems arising from
mechanics, Physics etc. consists of the so-called variational inequalities. In this paper
we shall restrict our attention to the study of the existence, uniqueness, and properties
of the solutions of elliptic variational inequality EVI, which have two classes, namely
EVI of the first kind EVI of the second kind.

1-1: Notations:
e V:real Hilbert space with scalar product (. , . ) and associated norm || .

e \": The dual space of V.

e a(., ) VxV >R is a bilinear, continuous and V- elliptic mapping on
V xV .
A bilinear form a(. , .) is said to be V-elliptic if there exists a positive constant

a such that a(v,v)> HVHZ VveV .
In general we do not assume a(.,.) to be symmetric, since in some applications
non-symmetric bilinear forms may occur naturally [1]:
e L:V — R continuous, linear functional.
e K isaclosed, convex, non-empty subset of V.
o j():VoR=RU{o} is a convex, lower semi-continuous (L.S.C) and
proper functional.
() is proper if <j(v)>->0 V veV and j#oo).
1.2: EVI of First Kind
To find ueV such that u is a solution of the problem :
o aluv-u)>L(v-u) , WeKkK
1"y e K

1.3: EVI of Second Kind
To find ueV such that u is a solution of the problem :



{a(u,v—u)+ V)= jlu)=L(v-u) ,V veV
ueV

1.4: Existence and Uniqueness Results for EVI of first Kind
1.4.1: A Theorem of Existence and Unigqueness
Theorem 1.4.1 [2]: The problem P; has one and only one solution.
Proof: 1- Uniqueness
Let u; and uy be solutions of (P1).We have then:
a(ul,v—ul)z L(v—ul) YVe K,uleK ........ 1)
a(uz,v—uz)z L(v—uz) vVveKu, eK....(2)

putting u, for v in (1) and u; for v in (2) and adding we get, by using the V-
ellipticity of a(.,.),

2
aHUZ —u1H < a(u2 —Up, U, —ul)s 0
which implies u;=uj, since a>0.

2. Existence: We will reduce the problem (P;) to a fixed point problem. By the Riesz
representation theorem for Hilbert spaces there exist
Ac (V,V) (A=A'if a(.,.) is symmetric) and ¢ €V such that:

(Auv)=a(uyv)  VuyveV

and L(V)=( £,v) WYveV ... (3)

Then the problem (P,) is equivalent to finding ueV such that:
(u—p(Au—r)—u,v—-u)<0 wv e K
uekK 0> 0 4)

This is equivalent to finding u such that
(u—p(Au—r)-u,v—u)<0 vv e K
uekK P >0 (4)

This is equivalent to finding u such that:

u=P (u-p(Au-r)), forsome p>0,................ (5)

where Py denotes the projection operator from V to K in the HHV consider the

map Wp(V)=Pk(V-p(Av-£)).......coeeviennnnn(B)

Let vi, vz €V, then since Py is a contraction we have:
RS Y

p*|AW, =V, )" —2pa(v, -v,,v, -V,)
Hence we have

W, (v,)-Wp(v, )| < - 2pa + p? A Jv, V[ e ™



2a

A
this range we have a unique solution for the fixed point problem which implies the
existence of a solution for (P,).

2- An Example of EVI of the First Kind ""The Obstacle Problem™
2.1: Notations

* ) : a bounded domain in R?.
*T: 0Q.
* x={X1, X2} a generic point of Q.

*v:{ai,ai}
X X

* C" ( ): space of m-times continuously differentiable real valued functions for
which all the derivative up to order m are continuous on Q.
*ClMQ)= {VEC (Q): supp (v) is a compact subset of Q}

*HVH 0= ‘DavH for ve Cm(ﬁ) where o=(a1, o) ; o, o NoN-negative
m. p, lo|<m
. a\a\
integers, a|=a, +a, and D =—————
OX 10X ;7

«\W ™?(Q2): completion of C™(2) in the norm defined above.
* \W.™?(€2): completion of C"(Q) in the above norm,
*H"(Q)=W"*(Q),
* H Q) =W, (Q).
2.2: The Mathematical Interpretation of The Problem :
LetV =H:(Q)= {\/ eH l(Q):V‘r = trace of V on I'=0}
=[Vu-vv
Q
where:

VuVv =

u ov N oau ov
oX, OX, OX, OX
L(v)=<f,v> for feV'=H™(2) and veV.

Lety € HY(Q)NC°(Q)and¥| <0

Define k = {v e H(Q):v> WY a.e.onQ}

Then the obstacle problem is a(P;) problem defined by:
Find u such that:

a(u,v—u)>L(v-u) wv ek



2.3: The Physical Interpretation of The Problem

Let an elastic membrane occupy a region Q in the X, X, plane, this membrane
is fixed along the boundary I" of Q. When these is no obstacle, from the theory of
elasticity the vertical displacement u, obtained by applying a vertical force F, is given
by the Dirichlet problem.

{{— Au = f inQ
(2.3)........
ul =0

Where f= F/t, t being the tension.

Where there is an obstacle, we have a free boundary problem and the
displacement u satisfies the variational inequality (2.2) with ¥ being the height of the
obstacle.

Similar EVI also occur, sometimes with non-symmetric bilinear forms, in
mathematical models for the following problems:-

- Lubrication phenomena [3].
- Filtration of liquids in porous media [1].
- Two dimensional, irrotational flows of perfect fluids [4], [5], [6].

3. Existence and Uniqueness Results of The ""Obstacle Problem**
For proving the existence and uniqueness of the problem (2.2) in section 2.2,
we need the following lemmas stated below without proof [2]:-

LEMMA (1): Let Q be a bounded domain in )" . Then the semi-norm on H*(2)

Y
V- U\Vv\ dx)
Q
is a norm on H:(Q) and it is equivalent to the norm on H () induced

from H'(Q)
- The above lemma is known as Poincare-Friedrichs lemma.

LEMMA (2): Let f =R — R be uniformly Lipschitz continuous (i. e. 3 k>0 such
that | ft)- f(t')<k(-t) tt'eR)andsuch f' has afinite number of points
of discontinuity. Then the induced map f on Hl(Q) defined by U — f(u) is a
continuous map into H*(€2). Similar results holds for H }(Q2) whenever £(0)=0.

Corollary

If V" and V" denote the positive and the negative parts of V for ve H l(Q)
(respectively Hé(Q)) then the map VvV—> {\/ Vv ‘} is continuous from
H*(Q)— H*(Q)x H*(Q) (respectively H(2) —H;(Q)x H;(Q)). Also v—|v]
IS continuous.
3.1: Proof the Existence and Uniqueness of the Problem (2.2)

In order to apply theorem (1.4.1), we have to prove that a(.,.) is
V-elliptic and that k is a closed, convex, non-empty set.



The V-ellipticity of a(.,.) follows from Lemma (1) and the convexity of k is
trivial , then:
1- k is non-empty

we have: W € H(Q)NC°(Q) with W <0 on T. Hence, by the above
corollary, y* e H'(Q). Since \P‘r <0 we have ¥ < 0‘. This implies
¥ e HYQ), then ¥ = max{¥,0}>¥.

Thus W* € k . Hence k is non-empty.
2- k is closed

Let v,—v strongly in H2(Q) where voek and ve H:(Q). Hence vo—v
strongly in L»(Q2). Therefore we can extract a subsequence {Vm} suchthat V. —V a.

e.onQ.Then v, =¥ a e onQimpliesthat: V=Y a.e. on Q; therefore vek.
Hence, by The. (1.4.1), we have a unique solution for (2.2).

4. Interpretation of the Problem (2.2) as a Free Boundary Problem
For the solution u of (2.2) we define:

Q ={x:xeQ, u(x)>¥(x)}
Q' ={x:xeQ, u(x)=¥(x),
y=0Q" naQ’ut =u|_;u’=ul,
We can formulate the problem (2.2) as the problem of finding y (the free
boundary) and u such that:

—Au=f onQ’, . 4.1)
u=Y on Q°, ...l (4.2)
u=0 on Iy, (4.3)
u|, :u°‘y e (8.8)

The physical interpretation of these relations is the following: (4.1) means
That on Q" the membrane is strictly over the obstacle, (4.2) means that on Q° the
membrane is in contact with the obstacle, (4.4) is a transmission relation at the free
boundary.

Actually (4.1)-(4.4) are not sufficient to characterize u since there are an
infinity of solutions for (4.1)-(4.4). therefore it is necessary to add other transmission
properties: for instance, if ¥ is smooth enough (say ¥ € H 2(Q)), we require the
continuity of VU aty

(Vu e H'(Q)xH l(Q)).

This kind of free boundary interpretation holds for several problems modeled
by EVI of first kind and second kind.

5. Regularity of Solution
we state without proof the following regularity theorem for the problem (2.2).
Theorem 5.1: (BREZIS-STAMPACCHIA [7]):

Let Q be a bounded domain in R? with a smooth boundary . It
L(v)= fv with fel’(Q), 1l<p<o
Q



and ¥ eW?"(Q),
Then the solution of the problem (2.2) is in W *P (Q)

LEMMA 5.2 [2]: Let Q be a bounded domain of R" with a boundary T sufficiently
smooth. Then HAV () defines anormon H *(Q) N H(Q) which is equivalent to

LZ
the norm induced by the H *(€2)-norm.

We shall now apply the lemma 5.2 to prove the following theorem using a
method of BREZIS-STAMPACCHIA [7].

Theorem 5.3: If T is smooth enough, ¥=0 and L(V):J. fv with f e L*(Q) then
Q

the solution u of the problem (2.2) satisfies:
uekNH?*(Q),
JAul; g <[t

reen(5.0)

p ()t
Proof: From section (3.1), it follows that problem (2.2) has a unique solution u, with
L and ¥ as above.

Let €>0, consider the following Dirichlet problem

{—EAUE inQ,

Problem (5.2) has a unique solution in Hé(Q) and the smoothness of I

assures that u. belongs to H 2(Q). Since u>0 a. e. on Q, by the maximum principle
for second order elliptic differential operators [8], we have u.>0. Hence:

Uc€K vni (5.3)
from (5.3) and (2.2) we obtain:
a(u,u,—u)=L(u —u)=[fu -u)...... (5.4)

The V-ellipticity of a(.,.) implies
a(u_,u_-u)=a(u_—u,u_—u)+a(u,u_-u)>a(u,u_-u)
so that by (5.4) we have:
a(u_u_ —u)=[f(u —u)........... (5.5)
By (5.2) and (5.5) we Obt(;ini
e[Vu_-v(Aau)  =ze|fAu,
Q Q

so that
[Vu_-v(Au )= [ fAu_ ... (5.6)

By Green's formule , (5.6) implies
—[(Au, ) dx = [ fAu,
Q Q

Thus HAUe

(Q) < Hf

L? L?(Q)



Using Schwarz inequality in L?(Q)
By Lemma (5.2) and relations (5.2), (5.7) we obtain Iir‘g U_=U weakly in

S (0) (5.8)

(which implies that lim u.=u strongly in H (Q)'for every s<2),
so that u e H*(Q2) with

A s <f
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